The

Complete
Reference

The Wide-Character
Functions »

775

776

C++: The Complete Reference

subsequently adopted by Standard C++. The wide-character functions operate

on charactets of type wchar_t, which are 16 bits. For the most part these functions
parallel their char equivalents. For example, the function iswspace() is the wide-
character version of isspace(). In general, the wide-character functions use the same
names as their char equivalents, except that a "w" is added.

The wide-character functions use two headers: <cwchar> and <cwctype>. The C
header files wchar.h and wetype.h are also supported.

The header <cwctype> defines the types wint_t, wetrans_t, and wetype_t. Many of
the wide-character functions receive a wide character as a parameter. The type of this
parameter is wint_t. It is capable of holding a wide character. The use of the wint_t
type in the wide-character functions parallels the use of int in the char-based functions.
wetrans_t and wetype_t are the types of objects used to represent a character mapping
(i.e., character translation) and the classification of a character, respectively. The wide-
character EOF mark is defined as WEOF.

In addition to defining win_t, the header <cwchar> defines the types wchar _t,
size_t, and mbstate_t. The wchar _t type creates a wide character object, and size_t
is the type of value returned by sizeof. The mbstate_t type describes an cbject that
holds the state of a multibyte-to-wide-character conversion. The <cwchar> header alsc
defines the macros NULL, WEOF, WCHAR_MAX, and WCHAR_MIN. The last two
define the maximum and minimum value that can be held in an object of type wchar_t.

Although the standard function library's support for wide characters is quite extensive,
these functions are not frequently used. One reason for this is that the Standard C++
1/0 system and class libraries provide both normal and wide-character support through
the use of template classes. Also, interest in wide-character-compliant programs has
been less than expected. Of course, this situation may change.

Since most of the wide-character functions simply parallel their char equivalents
and are not frequently used by most C++ programmers, only a brief description of
these functions is provided.

In 1995, a number of wide-character functions were added to Standard C and

The Wide-Character Classification Functions

The header <cwctype> provides the prototypes for the wide-character functions that
support character classification. These functions categorize wide characters as to their type
or convert the case of a character. Table 31-1 lists these functions along with their char
equivalents, which are described in Chapter 26.

In‘addition to the functions shown in Table 31-1, <cwctype> defines the following
ones, which provide an open-ended means of classifying characters.

wctype_t wetype(const char *attr);
int iswctype(wint_t ¢/, wetype_t attr_ob);

Chapter 31: The Wide-Character Functions

Function char Equivalent

int iswalnum(wint_t ch) isalnum()

int iswalpha(wint_t ch) isalpha()

int iswentrl(wint_t ch) iscntrl()

int iswdigit(wint_t ch) isdigit()

int iswgraph(wint_t ch) isgraph()

int iswlower{wint_t ch) islower()

int iswprint(wint_t ch) isprint()

int iswpunct(wint_t ¢) ispunct()

int iswspace(wint_t ch) isspace()

int iswupper(wint_t c/) isupper()

int iswxdigit(wint_t ch) isxdigit()

wint_t tolower(wint_t c/1) tolower()

wint_t toupper(wint_t c/) toupper()
Table 31-1. The Wide-Character Classification Functions

The function wetype() returns a value that can be passed to the aftr_ob parameter
to iswctype(). The string pointed to by attr specifies a property that a character must
have. The value in attr_ob is used to determine if c/1 is a character that has that property.
If it does, iswctype() returns nonzero. Otherwise, it returns zero. The following
property strings are defined for all execution environments.

alnum alpha cntrl digit
graph lower print punct
space upper xdigit

The following program demonstrates the wetype() and iswctype() functions.

#include <iostream>
#include <cwctype>
using namespace std;

777

778 C++: The Complete Reference

int main()
{
wctype_t X;

x = wctype ("space") ;

if (iswctype(L' ', x))
cout << "Is a space.\n";

return 0;

This program displays "Is a space.”
The functions wctrans() and towctrans() are also defined in <cwctype>. They are
shown here:

wctrans_t wctrans(const char *mapping);
wint_t towctrans(wint_t ch, wetrans_t mapping_ob);

The function wctrans() returns a value that can be passed to the mapping_ob parameter
to towctrans(). Here, the string pointed to by mapping specifies a mapping of one character
to another. This value can then be used by iswctrans() to map ch. The mapped value is
returned. The following mapping strings are supported in all execution environments.

tolower toupper
Here is a short example that demonstrates wetrans() and towctrans().

#include <iostream>
#include <cwctype>
using namespace std;

int main()
{

wctrans_t x;

x = wctrans({"tolower");

S

Chapter 31: The Wide-Character Functions

wchar_t ch = towctrans(L'W', x);

cout << (char) ch;

return 0;

This program displays a lowercase "w".

The Wide-Character I /0 Functions

Several of the I/O functions described in Chapter 25 have wide-character implementations.
These functions are shown in Table 31-2. The wide-character I/O functions use the header
<cwchar>. Notice that swprintf() and vswprintf() require an additional parameter not
needed by their char equivalents.

[n addition to those shown in the table, the following wide-character I/O function
has been added:

int fwide(FILE *stream, int how);

If how is positive, fwide() makes strenim a wide-character stream. If Jiow is negative,
fwide() makes stream into a char stream. If iow is zero, the stream is unaffected. If the
stream has already been oriented to either wide or normal characters, it will not be
changed. The function returns positive if the stream uses wide characters, negative it
the stream uses chars, and zero if the stream has not yet been oriented. A stream’s
orientation is also determined by its first use.

The Wide-Character String Functions

There are wide-character versions of the string manipulation functions described in
Chapter 26. These are shown in Table 31-3. They use the header <cwchar>. Note that
westok() requires an additional parameter not used by its char equivalent.

Wide-Character String Conversion Functions

The functions shown in Table 31-4 provide wide-character versions of the standard
numeric and time conversion functions. These functions use the header <cwchar>.

779

*780

C++: The Complete Reference

Function

win_t fgetwc(FILE *stream)

wchar_t *fgetws(wchar_t *str, int num,
FILE *stream)

wint_t fputwc(wchar_t ch, FILE *stream)

int fputws(const wchar_t *str, FILE *stream)

int fwprintf(FILE *stream, const wchar_t fmt, ...)

int fwscanf(FILE *stream, const wchar_t fmt, ...)

wint_t getwc(FILE *streamnt)

wint_t getwchar()

wint_t putwc(wchar_t ch, FILE *stream)
wint_t putwchar(wcharﬁt ch)

int swprintf(wchar_t *str, size_t num,
const wchar_t *fmt, ...)

int swscanf(const wchar_t *str,
const wchar_t *fmt, ...)

wint_t ungetwc(wint_t ch, FILE *stream)

int viwprintf(FILE *stream,
const wchar_t fimt, va_list arg)

int vswprintf(wchar_t *str, size_t numni,.
const wchar_t *fmt, va_list arg)

int vwprintf(const wchar_t *fmt, va_list arg)
int wprintf(const wchar _t it ...)

int wscanf(const wchar_t *fmt, ...)

char Equivalent

fgetc()
fgets()

fputc()
fputs()
fprintf()
fscanf()
getc()
getchar()
putc()
putchar()

sprintf()

Note the addition of the
parameter nuin, which limits
the number of characters
written to str.

sscanf()

ungetc()
viprintf()

vsprintf()

Note the addition of the
parameter num, which limits
the number of characters
written to str.

vprintf()

printf()

scanf()

Table 81-2.

The Wide-Character 1/0 Functions

Chapter 31: The Wide-Character Functions 781

Function char Equivalent
wchar_t *wescat(wchar_t *strl, const wchar_t *str2) strcat()

wchar_t *weschr(const wchar_t *str, wchar_t ch) strchr()

int wesemp(const wchar_t *str1, const wchar_t *str2) stremp()

int wescoll(const wehar_t *str1, const wchar_t *str2) strcoll()

size_t wesespn(const wcehar_t *strl, strespn()

const wchar_t *sfr2)

wchar_t *wescpy(wchar_t *str1, const wchar_t *str2) strepy()
size_t weslen(const wchar_t *str) strlen()
wchar_t *wesncpy(wchar_t *str1, const wchar_t str2, strnepy()

size_t numy)

wchar_t *wesncat(wchar_t *strl, const wchar_t str2, strncat()
size_t nun)

int wesnemp(const wehar_t *strl, strnemp()
const wchar_t *str2, size_t nunt)

wchar_t *wespbrk(const wchar_t *str1, strpbrk()
const wchar_t *str2)

wchar t *wesrchr(const wchar_t *str, wchar_t ch) strrchr()
size_t wesspn(const wchar _t *strl, strspn()
const wchar_t str2)
wchar_t *westok(wchar_t *str1, const wchar_t *str2, strtok()
wchar_t **endptr) Here, cndptr is a pointer

that holds information
necessary to continue
the tokenizing process.

wchar_t *wesstr(const wchar_t *strl, strstr()
const wchar_t *str2)

size_t wesxfrm(wchar_t *str1, const wchar_t *str2, strxfrm()
size_t num)

Table 31-3. The Wide-Character String Functions

782 C++: The Complete Reference

Function char Equivalent

size_t wesftime(wchar_t *str, size_t max, strftime()
const wchar_t *fint,
const struct tm *pir)

double westod(const wehar_t *start, strtod()
wchar _t **end);
long westol(const wchar_t *start, wchar_t **end, strtol()
int radix)

unsigned long wcstoul(const wchar_t *start, strtoul()
wechar_t **end, int radix)

Table 31-4. The Wide-Character Conversion Functions

___| Wide-Character Array Functions

The standard character array-manipulation functions, such as memcpy(), also have
wide-character equivalents. They are shown in Table 31-5. These functions use the
header <cwchar>.

Function char Equivalent

wchar_t *wmemchr(const wchar_t *str, memchr()
wchar_t ¢h, size_t num)

int wmememp(const wchar_t *str1, memcmp()
const wchar_t *str2, size_t num)

wchar_t *wmemcpy(wchar_t *str1, memcpy()
const wchar_t *str2,
size_t i)
wchar _t *wmemmove(wchar_t *str], memmove()
const wchar_t *str2,
size_t nuim)

wchar_t *wmemset(wchar_t *str, wchar_t ¢/, memset()
size_t num)

Table 31-5. The Wide-Character Array Functions

Chapter 31: The Wide-Character Functions

___| Multibyte /Wide-Character
Conversion Functions

The Standard C++ function library supplies various functions that support conversions
between multibyte and wide characters. These functions, shown in Table 31-6, use the
header <cwchar>. Many of them are restartable versions of the normal multibyte functions.
The restartable version utilizes the state information passed to it in a parameter of type
mbstate_t. If this parameter is null, the function will provide its own mbstate_t object.

Function Description

win_t btowc(int ch) Converts ch into its wide-character
equivalent and returns the result.
Returns WEOF on error or if ch is
not a one-byte, multibyte character.

size_t mbrlen(const char *str, size_t num, Restartable version of mblen() as
mbstate_t *state) described by state. Returns a positive
value that indicates the length of the
next multibyte character. Zero is
returned if the next character is null.
A negative value is returned if an
error OCcurs.

size_t mbrtowc{wchar_t *out, Restartable version of mbtowc() as
const char *in, size_t mun, described by state. Returns a positive
mbstate_t *statc) value that indicates the length of the

next multibyte character. Zero is
returned if the next character is null.
A negative value is returned if an
error occurs. If an error occurs, the
macro EILSEQ is assigned to errno.

int mbsinit(const mbstate_t *state) Returns true if stafe represents an
initial conversion state.
size_t mbsrtowcs(wchar_t *out, Restartable version of mbstowces() as
const char **in, described by state. Also, mbsrtowes()
size tnum, differs from mbstowcs() in that in is
mbstate_t state) an indirect pointer to the source array.

If an error occurs, the macro EILSEQ
is assigned to errno.

Table 31-6. Wide-Character/Multibyte Conversion Functions

783

C++: The Complete Reference

Function

size_t wertomb(char *out, wchar_t ch,
mbstate_t *state)

size_t wesrtombs(char *out,
const wchar_t **in,
size_t num,
mbstate_t *sfate)

int wctob(wint_t ch)

Description

Restartable version of wctomb()
as described by state. If an error
occurs, the macro EILSEQ is
assigned to errno.

Restartable version of westombs() as
described by state. Also, wesrtombs()
differs from wcestombs() in that i is
an indirect pointer to the source array.
If an error occurs, the macro EILSEQ
is assigned to errno.

Converts ch into its one-byte,
multibyte equivalent. Tt returns
EOF on failure.

Table 31-6. Wide-Character/Multibyte Conversion Functions (continued)

